302 research outputs found

    Dichlorolissoclimide, a new cytotoxic labdane derivative from Lissoclinum voeltzkowi Michaelson (Urochordata)

    Get PDF
    Spectral methods were used to determine the structure of a new cytotoxic compound, dicnlorolissoclimide 1, isolated from the New Caledonian ascidian #Lissoclinum voeltzkowi$ Michaelson. (Résumé d'auteur

    Egg components and offspring survival vary with group size and laying order in a cooperative breeder

    Get PDF
    Prenatal resource allocation to offspring can be influenced by maternal environment and offspring value, and affect offspring survival. An important pathway for flexible maternal allocation is via egg components such as nutrients and hormones. In cooperative breeders, females with helpers may increase resource allocation to eggs-'differential allocation'-or reduce it-'load-lightening'. Yet, helper effects on egg composition have been poorly studied. Moreover, it is unknown how helpers' presence modulates laying order effects on egg content and survival. Here, we investigated how maternal allocation varied with group size and laying order in the cooperatively breeding sociable weaver (Philetairus socius). We estimated interactive effects of helpers and laying order on allocation to egg mass, yolk nutrients-yolk mass, proteins, lipids, carotenoids, vitamin A and vitamin E-and hormones-testosterone, androstenedione, and corticosterone. Results concurred with the 'differential allocation' predictions. Females with more helpers produced later-laid eggs with heavier yolks and more lipids, and laid eggs overall richer in lipids. Proteins, antioxidants, and hormones were not found to vary with helper number. We then analyzed how helper number modulated laying order effects on survival. Females with more helpers did not specifically produce later-laid eggs with higher survival, but eggs laid by females with more helpers were overall more likely to fledge. These findings show that some egg components (yolk mass, lipids) can positively vary according to females' breeding group size, which may improve offspring fitness

    Multiplexed Immunofluorescence Analysis and Quantification of Intratumoral PD-1+ Tim-3+ CD8+ T Cells

    Get PDF
    Immune cells are important components of the tumor microenvironment and influence tumor growth and evolution at all stages of carcinogenesis. Notably, it is now well established that the immune infiltrate in human tumors can correlate with prognosis and response to therapy. The analysis of the immune infiltrate in the tumor microenvironment has become a major challenge for the classification of patients and the response to treatment. The co-expression of inhibitory receptors such as Program Cell Death Protein 1 (PD1; also known as CD279), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA-4), T-Cell Immunoglobulin and Mucin Containing Protein-3 (Tim-3; also known as CD366), and Lymphocyte Activation Gene 3 (Lag-3; also known as CD223), is a hallmark of T cell exhaustion. We developed a multiparametric in situ immunofluorescence staining to identify and quantify at the cellular level the co-expression of these inhibitory receptors. On a retrospective series of frozen tissue of renal cell carcinomas (RCC), using a fluorescence multispectral imaging technology coupled with an image analysis software, it was found that co-expression of PD-1 and Tim-3 on tumor infiltrating CD8 T cells is correlated with a poor prognosis in RCC. To our knowledge, this represents the first study demonstrating that this automated multiplex in situ technology may have some clinical relevance

    Effect of Restricted Preen-Gland Access on Maternal Self Maintenance and Reproductive Investment in Mallards

    Get PDF
    As egg production and offspring care are costly, females should invest resources adaptively into their eggs to optimize current offspring quality and their own lifetime reproductive success. Parasite infections can influence maternal investment decisions due to their multiple negative physiological effects. The act of preening--applying oils with anti-microbial properties to feathers--is thought to be a means by which birds combat pathogens and parasites, but little is known of how preening during the reproductive period (and its expected disease-protecting effects) influences maternal investment decisions at the level of the egg.Here, we experimentally prevented female mallards (Anas platyrhynchos) from accessing their preen gland during breeding and monitored female immunoresponsiveness (e.g., plasma lysozyme concentration) as well as some egg traits linked to offspring quality (e.g., egg mass, yolk carotenoid content, and albumen lysozyme levels). Females with no access to their preen gland showed an increase in plasma lysozyme level compared to control, normally preening females. In addition, preen-gland-restricted females laid significantly lighter eggs and deposited higher carotenoid concentrations in the yolk compared to control females. Albumen lysozyme activity did not differ significantly between eggs laid by females with or without preen gland access.Our results establish a new link between an important avian self-maintenance behaviour and aspects of maternal health and reproduction. We suggest that higher yolk carotenoid levels in eggs laid by preen-gland-restricted females may serve to boost health of offspring that would hatch in a comparatively microbe-rich environment

    Rad51 and DNA-PKcs are involved in the generation of specific telomere aberrations induced by the quadruplex ligand 360A that impair mitotic cell progression and lead to cell death

    Get PDF
    Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death
    corecore